

Open RAN Handbook

Authors: Keysight Technologies and Vodafone UK Radio Networks

> Version: 1.0

Document Status: Released

© 2023 Vodafone Ltd. © Keysight Technologies, 2023. All rights reserved.

This document comprises proprietary and confidential information and copyright material belonging to Vodafone Ltd. It must not be reproduced, used, published, or disclosed to third parties without the prior written consent of Vodafone Ltd.

The information in this document is subject to change without notice.

All trademarks acknowledged.

Vodafone Limited Vodafone House The Connection Newbury Berkshire RG14 2FN England

Keysight enables innovators to push the boundaries of engineering by quickly solving design, emulation, and test challenges to create the best product experiences. Start your innovation journey at www.keysight.com.

Document Control

Revision History

Version	Date	Authors	Change Summary
1.0	Feb. 2023	Akash Dumbre (Vodafone) Eng Wei Koo (Keysight)	First release

Key Vodafone Reviewers

Department	Role	Name
Technology	Lab Test & System Authority	Akash Dumbre
Technology	OpenRAN Senior Manager	Dan Shannon
Technology	OpenRAN Product Integration Manager	James Grayling

Vodafone Approval

Department	Role	Name
Technology	Lab Test & System Authority	Akash Dumbre
Technology	OpenRAN Senior Manager	Dan Shannon
Technology	OpenRAN Product Integration Manager	James Grayling

Keysight Approval

Department	Role	Name
Wireless	Open RAN Solutions Technical Lead	Tobias Vesterlund
Wireless	Open RAN Director	Eng Wei Koo

Contents

Document Co	ntrol	•••••		4
	Revision History			
	Key Vodafone Reviewers			
	Vodafone Approval			
	Kev	sight Ar	proval	4
	,	0 1		
Contents	•••••	•••••		5
1	Intr	oductio	on and Scope	8
2	Sta	ndards		9
	2.1	Differ	ences between: RAN, Open RAN, O-RAN, and OpenRAN	9
		2.1.1	RAN	9
		2.1.2	O DAN ALLIANCE	10
		2.1.3		10
		2.1.4	Openkan	12
3	Voc	lafone'	s Vision of an OpenRAN Testing Strategy	13
	3.1	Test L	abs Categories and Capabilities	13
	3.2	Open	RAN Deployment Blueprints	15
	3.3	Voda	fone's OpenRAN Lab Partnership Strategy	15
4	Tes	ting Str	ategy and Methodology	16
	4.1	Manu	al Testing Methodology	16
		4.1.1	Step 1: Identify	16
		4.1.2	Step 2: Evaluate	17
		4.1.3	Step 3: Execute	17
		4.1.4	Step 4: Verify	18
		4.1.5	Step 5: Share	18
	4.2	Autor 19	mated Testing Methodology with Test Automation Softwa	re
		4.2.1	Test automation invocation phases	19
		4.2.2	Test automation architecture	20
		4.2.3	3GPP RF and O-RAN WG4 conformance automation	21
		4.2.4	O-RAN Fronthaul Interoperability testing	22
		4.2.5 (UeSIN	 U-RAN TIFG Test automation using Test UEs/Emulated U	ES 22
		4.2.6	Functional/Load and Stress testing automation using	
		emula	ted UEs (UeSIM and RuSIM)	23
		4.2.7	Test automation efficiency benchmarking and	
		impro	vements	24
5	Tes	t Specif	fications and Focus Areas	25
	5.1	Confo	ormance, Interoperability, and End-to-End (E2E) Testing	25

6	Test Configurations (Identify and Evaluate)	.27
	6.1 Test Configuration 1	.27
	6.1.1 Step 1: Identify	27
	6.1.2 Step 2: Evaluate	28
	6.2 Test Configuration 2	.32
	6.2.1 Step 1: Identify	32
	6.2 Tost Configuration 2	27
	6.3.1 Step 1: Identify	.37
	6.3.2 Step 2: Evaluate	.37
7	Vodafone's Current OpenRAN labs testing capabilities	.43
8	Vodafone's Plan to Extend Open RAN Testing Confidence	.44
9	Concluding Remarks	.46
Annex / Apper	ndix A	.48
	A1. Information for the O-RU vendor to provide	.48
	A2. Information for the O-DU vendor to provide	.52
List of Figures		
	Figure 2-1. Open RAN High-Level Overview	9
	Figure 2-2. Open RAN Innovation Pillars	11
	Figure 4-1. Manual Testing Methodology, Step 1: Identify	16
	Figure 4-2. Manual Testing Methodology, Step 2: Evaluate	17
	Figure 4-3. Manual Testing Methodology, Step 3: Execute	17
	Figure 4-4. Manual Testing Methodology, Step 4: Verify	18
	Figure 4-5. Manual Testing Methodology, Step 5: Share	18
	Figure 4-6. Test Automation High Level Architecture	20
	Figure 4-7. 3GPP RF and O-RAN WG4 Conformance Automation (Simplified)	.21
	Figure 5-1. Conformance, Interoperability, and End-to-End (E2E) Testir	וg 25.
	Figure 6-1. Test Configuration 1, Step 1: Identify	27
	Figure 6-2. Test Configuration 2, Step 1: Identify	32
	Figure 6-3. Test Configuration 3, Step 1: Identify	37

Table 5-1. Test Specifications and Number of Test Cases	.26
Table 6-1. Selection of test plans for DUT = O-RU	. 28
Table 6-2. Test Tools for DUT = O-RU	. 30
Table 6-3. Selection of test plans for DUT = O-DU/O-CU	. 33
Table 6-4. Test tools for DUT = O-DU/O-CU	.35
Table 6-5 Selection of test plans for DUTs = O-RU and O-DU	. 38
Table 6-6 Test tools for DUTs = O-RU and O-DU	.40
	Table 5-1. Test Specifications and Number of Test CasesTable 6-1. Selection of test plans for DUT = O-RUTable 6-2. Test Tools for DUT = O-RUTable 6-3. Selection of test plans for DUT = O-DU/O-CUTable 6-4. Test tools for DUT = O-DU/O-CUTable 6-5 Selection of test plans for DUTs = O-RU and O-DUTable 6-6 Test tools for DUTs = O-RU and O-DU

1 Introduction and Scope

In 2021, Vodafone unveiled its strategic vendors: Dell, NEC, Samsung Electronics, Wind River, Capgemini Engineering, and Keysight Technologies – to jointly deliver the first commercial deployment of Open Radio Access Network (Open RAN) in Europe. Since then, it has sparked other large-scale Open RAN launches and spearheaded the next wave of digital transformations across Europe.

Vodafone endeavoured to define a robust testing strategy for Open RAN systems and help to accelerate commercial deployments globally by operators at scale for telco and vertical industry use cases and applications.

Vodafone and Keysight would be thrilled to collaborate with many more vendors in order to help grow the OpenRAN eco-system.

2 Standards

2.1 Differences between: RAN, Open RAN, O-RAN, and OpenRAN

2.1.1 RAN

If you have used a cell phone, you have used a RAN.

A **RAN** (Radio Access Network) is what your cell phone¹ communicates with and connects to when you make a phone call.

In technical terms, your cell phone or User Equipment (UE) connects to the RAN portion of a Mobile or Cellular Network. A Mobile or Cellular Network is comprised of two domains: RAN and Core. The RAN connects to the Core through a fibre Backhaul.

A **Core** [Core Network] contains hardware and software, that runs Services (programs); these Services run on top of the Core Network and in turn connect to a Data Network (such as the Internet).

* O-CU (O-RAN Central Unit)

which connects to the Backhaul (it connects the O-CU to the Core)

Figure 2-1. Open RAN High-Level Overview

¹ Cell phones may also be called mobile phones, cellular phones, or wireless devices.

2.1.2 Open RAN

Radio access networks (RANs) have been controlled by proprietary network equipment from the same vendor or group of vendors for the majority of cellular communications history. Single-vendor RANs may have provided certain benefits as the wireless communications industry matured, that time has long passed. Being locked into a proprietary RAN has placed mobile network operators (MNOs) at the mercy of network equipment makers, creating a bottleneck for innovation.

Open RAN enables mobile network operators to use equipment from multiple vendors and still ensure interoperability.

Open RAN disaggregated RAN functionality by using open interface specifications and communitydeveloped standards between elements of the RAN; this means each piece of hardware and software can be separated and replaced by hardware or software from various vendors.

2.1.3 O-RAN ALLIANCE

Openness and intelligence are the names of the game at the O-RAN ALLIANCE.

In recent years, several global MNOs around the world are encouraging adoption of an open RAN for 5G, primarily through the O-RAN ALLIANCE.

The O-RAN ALLIANCE is acting as key force that brings together mobile network operators, network equipment manufacturers, chipset vendors, cloud providers including hyper scalers and application developers across the globe to develop open radio access network standards and recommendations.

The O-RAN ALLIANCE has defined a next-generation RAN architecture that divides what was previously a single-vendor, hardware-centric RAN into a fully programmable RAN consisting of disaggregated modular components most of which (apart from the Radio Units) are cloud native micro services designed for AI/ML (Artificial Intelligence/Machine Learning) assisted dynamic orchestration and zero touch automation. Building a more cost-effective, agile RAN necessitates transparency. Each of these components can be supplied by multiple vendors as the interactions between these components over open interfaces are precisely defined by interoperable standards developed by O-RAN ALLIANCE.

The figure below shows the 3 major innovation pillars of the O-RAN architecture.

- 1. Open Dis-aggregation
- 2. Open Cloudification
- 3. Open Intelligence

Figure 2-2. Open RAN Innovation Pillars

Open interfaces are required for small-scale providers to swiftly develop their own services. Open interfaces make multi-vendor installations possible, as well as a more competitive supplier ecosystem. While the move to open RAN offers numerous benefits for MNOs but it also imposes additional technical complexities and stringent testing requirements.

Figure 2-3 shows the Open RAN architecture and reference points.

Figure 2-3. Open RAN Architecture and Reference Points

2.1.4 OpenRAN

OpenRAN¹ is a new approach to building the mobile networks that are needed to connect smartphones and other devices to the internet and other users. Traditional RAN solutions generally require telecommunications operators to work with single suppliers across an entire mobile site. This approach can be a barrier to entry for smaller suppliers that might not have the financial requirements or the resources to build and manage solutions across the entire RAN ecosystem (for example, radio antenna, baseband units, CU/DU servers, management, and orchestration software, etc.).

OpenRAN technology enables the creation of all software and hardware components of the RAN to be built to industry-wide specifications, ensuring interoperability between each component. This means telecommunications operations can choose the best solution providers for each component, safe in the knowledge that components will work together with the rest of the network (for example, able to exchange data and information).

This added flexibility will also allow Vodafone to become more software orientated as upgrade paths of each of the different components are decoupled (disaggregated). Introducing new software, features, and services becomes much simpler, faster, and more cost effective.

Ultimately, the aim of OpenRAN is to widen the pool of suppliers in the RAN ecosystem, while simultaneously lowering the barrier of entry for smaller companies and specialists. In time, a wider pool of suppliers will encourage greater competition, which will in turn lower the cost of delivering connectivity solutions and provide a catalyst for innovation.

Pioneered by Vodafone and its partners, OpenRAN will drive greater innovation through a diverse and open vendor ecosystem. It will lead to a more cost-effective, secure, energy efficient, and customer-focused network of the future.

¹ OpenRAN is a project group that is part of TIP [Telecom Infrastructure Project] (aka, TIP OpenRAN PG) with a main focus of developing fully programmable disaggregated RAN functionality that is built using open interface specifications between the various elements of the RAN.

3 Vodafone's Vision of an OpenRAN Testing Strategy

3.1 Test Labs Categories and Capabilities

OpenRAN testing can be performed in three different categories of test labs depending on the test objectives, capabilities of the lab's test setup, as well as the expertise and knowledge of standards, testing, and test tools (which includes test automation and reporting).

Category 1 Test Labs: Functional End-to-End (E2E) testing for LTE eNB and NR gNB can be performed in labs with basic lab setup and knowledge, especially if the test objective is for Open RAN technology exploration, assessment, and evaluation. For example, gaining experiences or learnings by testing to gain early exposure of Open RAN implementation maturity, benefits, and challenges; these might include smart manufacturing private network use cases and applications. Small cells and non-Massive MIMO radios may be more suitable for these labs, while Massive MIMO beam forming radios may be challenging to set up and test.

The O-RAN ALLIANCE Test and Integration Focus Group (TIFG) End-to-End (E2E) test specification test cases can be used by the Category 1 Test Labs as a starting point.

Category 2 Test Labs: In addition to Category 1 Test Labs, Category 2 Test Labs are designed to support 3GPP conformance, O-RAN conformance, and O-RAN interoperability testing. This testing can be performed in labs with a more elaborate lab setup and knowledge as compared to Category 1 Test Labs. Single Device Under Test (DUT) conformance testing, for example, an O-RAN Radio Unit (O-RU) requires more specialized knowledge to test and validate for compliance to 3GPP and O-RAN standards and specifications. Massive MIMO beam forming radios, O-RAN Distributed Units (O-DUs), and base stations can be tested in these labs which are more capable than Category 1 Test Labs focusing on the functional and conformance aspects. Category 2 Test Labs can complement Category 1 Test Labs with conformance and interoperability testing capabilities.

The O-RAN ALLIANCE Working Groups (WGs) specify Conformance and Interoperability test specifications. At this current time of writing, O-RAN ALLIANCE WG2 (Non-Real Time RIC and A1 interface), WG3 (Near-Real Time RIC and E2 interface), WG4 (Open Fronthaul), WG5 (F1, X2, Xn), WG8 (Open Reference Stack), WG9 (xHaul transport), WG11 (Security) have published test specifications.

The conformance test specifications from 3GPP (base station conformance testing) and O-RAN WG4, interoperability test specifications from WG4 and WG5 can be used by the Category 2 Test Labs. O-RAN WG2, WG3, WG8, WG9 and WG11 test specifications are better suited for the Category 3 Test Labs.

Category 3 Test Labs: In addition to both Category 1 and Category 2 Test Labs, Category 3 Test Labs are designed to support deployment readiness testing capabilities; these additional tests must be performed in test labs with extensive lab setup and knowledge. Deployment readiness testing includes testing and optimizing for features, energy efficiency, performance, scalability, security, stability, robustness, and resiliency, under real-world operating conditions.

• Massive MIMO beam forming and Multi-Users MIMO radios, O-DUs, and base stations should be tested in Category 3 Test Labs for Key Performance Indicators (KPIs) such as spectral efficiency, capacity gains, power consumption, and energy efficiency among others.

- Security resilience and failover should be validated with extreme AI/ML enabled attacks, defence and failover validation, and threat detection in a complete Developer Security Operations (DevSecOps) approach.
- Energy Plane efficiency and savings should be maximized for each of the software and hardware components and operations resulting in the most optimal usage of energy, while maintaining best in class user and service experiences, network performances, and minimizing impacts to User Equipment (UE), network complexities, and overheads.
- Live-to-Lab testing should be conducted as live network operating environments and lifecycle management are to be emulated in a lab environment; testing can be conducted in a realistic lab test environment.
- **Detailed troubleshooting with efficient root cause analysis** can be expected to be delivered by these labs as they are better equipped with troubleshooting tools and expertise in the technology in all domains single interface across layers and multiple interfaces.
- **Network OAM** should be conducted to ensure that operational network scenarios including: FCAPS functionalities and Performance fault configuration capabilities are thoroughly validated; this requires extensive experience with network operations.

Category 3 test labs are designed to operate above and beyond Category 1 and 2 test labs capabilities.

The O-RAN ALLIANCE WG2, WG3, WG8, WG9 and WG11 test specifications can be used by the Category 3 Test Labs.

The deployment readiness test cases have been designed with many years of technology research and experiences testing, optimization and operating large scale commercial live networks across multiple generations of wireless technologies working with all parts of the wireless ecosystem. These deployment readiness test cases are currently not specified by O-RAN ALLIANCE.

Vodafone operates Category 3 Test Labs and partners with global Category 1 and Category 2 Test Labs; together, *Vodafone's Vision of an OpenRAN Testing Strategy* is comprehensive and covers: Category 1, Category 2, and Category 3 Test Labs.

3.2 Open RAN Deployment Blueprints

O-RAN ALLIANCE defined next generation RAN architecture and specifications supporting multi-vendors interoperability for all modular and programmable components offers to the ecosystem enormous opportunities for innovation.

However, the extreme flexibility which enables numerous possibilities for interoperability scenarios has created its own set of challenges for the vendors as it is not possible for the vendors to design, build, test and optimize components to support multi-vendors interoperability with deployment grade quality for all possible interoperability scenarios.

O-RAN ALLIANCE WG4 for example has defined an open fronthaul interoperability test profile template and has gathered a set of IOT profiles which have been implemented by the fronthaul node vendors. Testing and integration activities are typically needing these IOT profiles (including WG4 IOT profiles) to be provided by the vendors to assist with test cases design, selection, and test environment configuration.

Annex A1 and A2 detail the parameters which are required to be provided by the O-RU and O-DU vendors for conformance, interoperability and E2E testing focusing on the open fronthaul interface.

To accelerate the scaling of Open RAN adoption, Vodafone is collaborating with the Open RAN ecosystem to align and specify a set of Open RAN Deployment Blueprints which can be widely deployed by operators globally to support various deployment scenarios. These deployment blueprints will include specifications of IOT profiles which can be implemented, tested, and optimized by the vendors developing components in compliance to these blueprints. This set of deployment blueprints will drastically reduce the cost and complexity of test and integration efforts and maximize the return of investments for the vendors ecosystems as they are able to address a much wider market with the same products.

3.3 Vodafone's OpenRAN Lab Partnership Strategy

In Vodafone's OpenRAN test labs, as we partner with existing and upcoming vendors to define the success of this new technology, we wanted to assure we covered every aspect and defined a test process that is applicable to any and all projects that come to our door. To accomplish this, a step-by-step "Testing Strategy and Methodology" has been developed.

4 Testing Strategy and Methodology

Vodafone has developed a step-by-step "Manual Testing Methodology": Step 1: Identify > Step 2: Evaluate > Step 3: Execute > Step 4: Verify > Step 5: Share

This methodology is one of many different methodologies that are equally crucial for effective deployment. It is operator, system integrator and vendor neutral, meaning other industry players can leverage it in combination with other methodologies in order to accelerate commercial deployments, driving demand and helping the Open RAN ecosystem to scale, leading to greater competition and innovation.

4.1 Manual Testing Methodology

4.1.1 Step 1: Identify

Figure 4-1. Manual Testing Methodology, Step 1: Identify

In this initial step, all of the details for the lab entry process are captured. For example, project baseline configuration, high level design (HLD), and hardware connection details from vendors.

We define the actual setup configuration for the O-RAN system under test. Because the O-RAN system is made up of numerous components, the DUT can be a single component or several components and some of them can be real or emulated versions.

There are several possible combinations involving real and emulated UEs and network functions. (Identifying the appropriate setup type will help us to define an accurate test plan¹ which is the second step in the process.)

¹ *Test Plans* can consist of any number of Test Steps. Each *Test Step* provides/encapsulates a specific functionality which may perform a simple or complex set of operations on a Device Under Test (DUT); these simple or complex set of operations are defined by each of the test cases.

4.1.2 Step 2: Evaluate

Figure 4-2. Manual Testing Methodology, Step 2: Evaluate

In this step, we define the test plan which is applicable to the selected setup configuration from Step 1: Identify.

Based on the setup configuration, we make decisions about which test cases¹ are applicable and supported by the configuration. This logical mapping between setup configuration and corresponding test plan helps us yield the actual number of test cases we can run in our lab from the master test plan.

4.1.3 Step 3: Execute

Figure 4-3. Manual Testing Methodology, Step 3: Execute

Once a test plan is ready, we execute the test cases. The initial plan is to run test cases manually and then spend the energy in automating them. Once test automation is in place, it will be easier to run a specific test plan in a limited time frame; we can then create automated test plans and run them using a test manager program as an overnight regression.

¹ *Test Cases* are a list of tests that can be run on each disaggregated (separated) portion of hardware or software, of an O-RAN Mobile Network Architecture; when run and passed, a test case should provide assurance that the disaggregated portion, of the O-RAN Mobile Network Architecture that was tested, conforms to O-RAN specifications as defined by the O-RAN ALLIANCE.

4.1.4 Step 4: Verify

Once the test cases are executed successfully, we verify the results against the standards defined in specifications (for example, 3GPP & O-RAN ALLIANCE specifications¹).

There might be some failures too, hence we will be reporting them to respective stakeholders and making sure those are resolved within a specific timeframe; the failed test cases will be repeated. We will also make notes of new learnings that will happen during various testing cycles in order to make it less error-prone for future projects.

4.1.5 Step 5: Share

Figure 4-5. Manual Testing Methodology, Step 5: Share

Last, we generate a test report and capture all the details. The results are stored in a database for future references. The test report contains detailed information on executed test plans. This report can be shared widely within the organisation if needed.

¹ Specifications maintained by the 3rd Generation Partnership Project (3GPP), www.3gpp.org and the O-RAN ALLIANCE, www.o-ran.org.

4.2 Automated Testing Methodology with Test Automation Software

Open RAN technology features multiple moving parts, such as:

- Hardware: Different vendors, different models, different HW releases.
- Software: Different vendors, new features implemented, adoption of new standard versions,
- Real life traffic scenarios: Indoor, outdoor, hotspots, heterogeneous networks, special designs, rural, urban, suburban, traffic models, network environment, frequency bands, ...

Automation is the way to efficiently test network functioning under large percentage of scenarios before going into network deployment.

4.2.1 Test automation invocation phases

Automation and test case invocation can be done at different phases in a project.

• **Pre-production phase**: Activities completed at the lab during validation of a new/modification/existing System Under Test (SUT) and test conditions. As example, moving parts referenced above.

We can distinguish the following in non-mutually exclusive ways:

- Lab Benchmark and Validation: Engineers defining test campaign on a Test Manager and executing (scheduling or queuing) some specific testing to validate, benchmark, or troubleshoot a given setup.
- Continuous Testing: Automatic trigger test execution and reporting under given conditions or periodic testing executions of predefined test campaigns.
- Live production phase: Activities completed at the lab and potentially some on the real network to ensure validation of a new network change before moving into large deployment.

4.2.2 Test automation architecture

Test automation architecture needs to be ready for the different testing invocation methods, in order to take maximum advantage of test infrastructure in different phases of the life cycle.

Figure 4-6. Test Automation High Level Architecture

Test Manager: Enables Engineers to define and launch test campaigns execution (scheduled or queued). Access to logs for troubleshooting and formal report generation. Different use cases can be identified:

- Compliance testing mode: Minimum parametrization changes on the test cases. Important ease of use and efficient workflow, including formal report generation.
- Development testing mode: Flexibility to adapt standard test cases with different parametrization to explore system under test (SUT) limits.

Test Campaign Manager: Enables orchestration of test invocation request from different sources.

Test Case Library: Library of built test scripts; Based on standards or ad-hoc requirements. Test case/solution versioning tracking it is recommended.

Test Results Library (PBM): Database of test executions with granularity on date, test setup, ... This database it can be used for analytics, reporting, AI/ML, ...

Keysight Test Assets/Test Infrastructure: Test Equipment available.

System Under Test: In same cases it is required to automate the system under test. Potentially it might be non-API driven element.

Test Data Reporting & Analytics (PBM): It is highly recommended for troubleshooting complex scenarios.

4.2.3 3GPP RF and O-RAN WG4 conformance automation

Test packages for O-RU conformance:

- Automated O-RAN WG4 Fronthaul Conformance test (CUSM-Plane) to support Test Configuration 1 specified in section 6.1
- Automated 3GPP RF Conformance test (Chapters 6 & 7) to support Test Configuration 1 specified in section 6.1

Figure 4-7. 3GPP RF and O-RAN WG4 Conformance Automation (Simplified)

Testing in the Uplink high level concept:

- Automation builds waveform, loads it into the VSG which will propagate on the RF interface.
- O-RU (DUT) receives the waveform in the RF interface and propagates it into the Fronthaul.
- Automation collects O-DU Emulator capture on the Fronthaul, completes test script procedures, and a test case verdict is produced and stored together with execution logs.

Testing in the Downlink high level concept:

- Automation builds, encapsulates waveform and O-DU Emulator sends it on the Font-Haul.
- O-RU (DUT) receives signal on the Fronthaul interface and propagates it to the RF interface.
- Automation collects RF waveform from VSA, completes test script procedures and a test case verdict is produced and stored together with execution logs.

4.2.4 O-RAN Fronthaul Interoperability testing

Figure 4-8. E2E TIFG Test automation using Test UEs/Emulated UEs (Simplified)

Testing Fronthaul Interoperability high level concept:

• Automation triggers pre-defined test scenarios and information exchanged between O-RU and O-DU/O-CU would be collected through Keysight Fronthaul Analyzer, and verdict will be produced and stored together with execution logs.

4.2.5 O-RAN TIFG Test automation using Test UEs/Emulated UEs (UeSIM/RuSIM)

Test packages for O-RAN TIFG E2E testing:

- Automated O-RAN TIFG E2E test specification test cases with Test UEs to support Test Configuration 3 specified in section 6.3
- Automated O-RAN TIFG E2E test specification test cases with Emulated UEs (UeSIM) to support Test Configuration 3 specified in section 6.3
- Automated O-RAN TIFG E2E test specification test cases with Emulated UEs (RuSIM) to support Test Configuration 2 specified in section 6.2
- Additional packages for Analytics, Benchmarking and Advanced Reporting

Figure 4-9. E2E TIFG Test automation using Test UEs/Emulated UEs (Simplified)

Testing E2E Test Automation high level concept:

- Automation triggers pre-defined traffic profile in 1-N devices, collects KPIs and verdict is produced and stored together with execution logs.
- PBM (Performance Benchmarking Solution) can produce results analytics and advanced reporting.

4.2.6 Functional/Load and Stress testing automation using emulated UEs (UeSIM and RuSIM)

Test packages for Load/Stress testing:

- UeSIM/RuSIM Module
- UeSIM/RuSIM Test Case Module
- UeSIM/RuSIM SCAS Test Case Module

Figure 4-10. Load/Stress Testing Automation (Simplified)

Testing Load/Stress Test Automation high level concept:

- Automation with multiple pre-defined/ad-hoc test scripts to test load/stress testing together with analytics and reporting with PBM.
- Example: O-RAN TIFG E2E Test Specification Chapter 7 (Security), Chapter 8 (Load and Stress Test)

4.2.7 Test automation efficiency benchmarking and improvements

While the benefits of test automation are well understood to reduce the time required to run repetitive tests in a consistent and repeatable manner (as they are much faster than manual tests) at no additional cost, it is of key interest to the industry to measure the efficiency of test automation and work on continuous improvements.

- Perform the "Manual Testing Methodology" with Keysight solutions and make a note of the time taken for each test case to run manually. Also, take note of the time taken for any onetime configurations needed on the system. As we will need to change setup configurations for different projects, each one-time configuration will need to be done before testing commences.
- 2) As we establish the confidence in manual testing, start automating the test cases in parallel.
- 3) Run the automation campaigns (test plans) using test manager and generate the test report. The test report will contain total run time for the campaign as well as time taken for individual tests. This will give us a brief comparison of how much time is saved using test automation. Using test automation, we can run certain test campaigns in multiple iterations to gauge the performance of networks and components involved in testing.
- 4) This will eventually help in benchmarking a process as we can compare test reports of similar test campaigns, with similar iterations, executed for different OpenRAN systems.

5 Test Specifications and Focus Areas

5.1 Conformance, Interoperability, and End-to-End (E2E) Testing

Figure 5-1. Conformance, Interoperability, and End-to-End (E2E) Testing

Figure 5-1 shows the test specifications and focus areas in this release of the document.

Conformance testing focuses on the most detailed test and verification for a single DUT (such as an O-RU or O-DU) and its functions and interfaces implementation compliance to normative 3GPP and O-RAN technical specifications using conformance test specifications and test cases.

Interoperability testing focuses on the interoperability between two DUTs (such as an O-RU and O-DU) and its functions and interfaces implementation compliance to normative O-RAN technical specifications using interoperability test specifications and test cases.

End-to-End (E2E) testing focuses on the E2E RAN testing with the multi-vendors O-RAN system tested as a 3GPP compliant RAN. All the O-RAN network functions are DUTs. 3GPP and O-RAN test specifications are used for End-to-End (E2E) testing.

For all Conformance, Interoperability, and E2E testing, the DUTs are required to be tested in operational state with all surrounding network functions either emulated (mostly in stateful manners) or as reference network functions which may be deployed ensuring that all tests performed are fully repeatable and produce consistent, accurate, and reliable test results.

Test results and outcomes should be determined using information gathered from test tools as much as possible to avoid / minimize the dependency on using DUTs vendors specific logs for testing and verification in order to ensure vendors neutral test outcomes and the test results are not influenced by the logging process which may impact DUTs performance during tests which is undesirable.

Table 5-1. Test Specifications and Number of Test Cases				
Test Specification (latest version number)	DUTs (IUTs)	Number of Test Cases		
O-RAN WG4 Conformance Test (version 7.0)	O-RU (fronthaul)	Control and User: 219 Synchronization: 2 Management: 36		
	O-DU/O- CU (fronthaul)	Control and User: 8 Synchronization: 4 Management: 36		
	FHM	Conformance test cases specified are not in scope for this version of the document		
3GPP RF Conformance Test (Conducted) 3GPP TS 38.141-1 V16.13.0 (2022-09)	RU (Uu)	Transmitter: 12 Receiver: 8		
3GPP RF Conformance Test (Radiated) 3GPP TS 38.141-2 V16.13.0 (2022-09)	RU (Uu)	Transmitter: 9 Receiver: 5		
O-RAN WG4 Interoperability Test (version 9.0)	O-RU & O-DU (fronthaul)	Control and User: 7 Synchronization: 6 Management: 2		
O-RAN TIFG E2E Test (version 4.0) 3GPP Security Assurance Specification (SCAS) for the next generation Node B (gNodeB) TS 33.511 V16.8.0 (2022-09)	eNB, gNB	Functional: 13 Performance: 13 Services: 23 Security: 25 Load and Stress: 8 RIC enabled E2E Use case: 1		

6 Test Configurations (Identify and Evaluate)

In this chapter, details are provided on helping to select the required test plans¹ and in each of these test plans, the test cases² which are applicable to a selected test configuration.

6.1 Test Configuration 1

6.1.1 Step 1: Identify

Device Under Test (DUT) = O-RU Interface Under Test (IUT) = O-RAN Fronthaul (OFH) and 3GPP Uu

Figure 6-1. Test Configuration 1, Step 1: Identify

Possible testing for Test Configuration 1:

- 3GPP RF Conformance (Chapter 6 and 7)
- O-RAN WG4 Fronthaul Conformance

¹ *Test Plans* can consist of any number of Test Steps. Each *Test Step* provides/encapsulates a specific functionality which may perform a simple or complex set of operations on a Device Under Test (DUT); these simple or complex set of operations are defined by each of the test cases.

² *Test Cases* are a list of tests that can be run on each disaggregated (separated) portion of hardware or software, of an O-RAN Mobile Network Architecture; when run and passed, a test case should provide assurance that the disaggregated portion, of the O-RAN Mobile Network Architecture that was tested, conforms to O-RAN specifications as defined by the O-RAN ALLIANCE.

6.1.2 Step 2: Evaluate

Similar to "6.1.1 Step 1: Identify", there are several possible combinations involving a real UE, an emulated UE, and network functions. Identifying the appropriate setup type helps define an accurate test plan.

Device Under Test (DUT) = O-RU Interface Under Test (IUT) = O-RAN Fronthaul (OFH) and 3GPP Uu

6.1.2.1 Selection of test plans

Table 6-1. Selection of test plans for DUT = O-RU					
Interface Under Test (IUT)	Interface Under Test (IUT) Test Plans Comments				
O-RAN Fronthaul (OFH)	O-RAN WG4 Conformance Test Specification				
3GPP Uu	3GPP NR Base Station conformance test: Conducted (3GPP TS 38.141-1) Radiated (3GPP TS 38.141-2)	To select the required 3GPP test specification, the mode of connection to the O-RU, on the RF interface, must first be determined as either: Conducted or Radiated (OTA) ¹ .			
General	Additional test plans to be listed (for example, possible additions of power consumption measurements and others.)				

6.1.2.2 Selection of test cases

O-RAN WG4 Conformance test specification documents the testing methodology, test setup, and test cases for open fronthaul conformance testing of control, user, synchronization, and management planes (CUSM-Planes) for the O-RU and O-DU.

O-RAN WG4 Conformance test cases are classified as Mandatory, Conditional Mandatory (dependent on the capabilities of the DUTs) which are required to be passed, while the Optional test cases will have to be determined if these will need to be executed and passed.

¹ Radiated can also be referred to as Over-the-Air (OTA).

The O-RAN O-RU test profile includes the following listed information required to determine a set of test cases for the specific O-RU (DUT). It is recommended to manage, and version control all O-RAN O-RU test profiles in a central (cloud) location accessible to all test beds.

- O-RAN WG4 open fronthaul test profile as this will include key information such as Radio access technology: LTE/NR, FDD/TDD, IQ compression, Beamforming Methods (if beam forming feature is supported by the DUT), S-Plane topology configuration.
- DUT information to be determined depending on Vodafone's test report requirements. The "O-RAN Certification and Badging Processes and Procedures" document defines a set of test report templates which can serve as a good reference as the templates include information such as O-RU vendor, model number, versions for hardware, software and firmware among other information which are required for test reporting purpose.
- List of test cases with the test specification releases and version numbers.

6.1.2.3 Test setup

The actual O-RU test setup is to be determined with the following listed parameters:

- Connectivity to the O-RU on the RF interface
 - Open Radio Unit (O-RU) is Category A or B
 - Conducted or Radiated (OTA)
 - Massive MIMO or non-Massive MIMO support
- Connectivity to the O-RU on the fronthaul interface
 - Number of ports and connectivity rates (10GE/25GE/others)
- Timing and Synchronization topology LLS-C1, LLS-C2, LLS-C3

6.1.2.4 Test tools

Table 6-2. Test Tools for DUT = O-RU					
Testing Tool	Keysight Test Solution	Connection to DUT (O-RU)	Requirements		
O-DU Emulator	Open RAN Studio	Open fronthaul (ethernet) towards the O-RU	Required : for all O-RU O-RAN WG4 conformance CUSM-Planes test cases		
Network Impairment Emulator	Network Emulator 2/3	Open fronthaul (ethernet) inline between the Open RAN Studio and O-RU	Required : for test cases which require selective packet discards, delay, and jitter such as for delay management testing.		
Signal Analyzer (Keysight VSA)	VXT	RF towards the O-RU	Required : for all O-RU O-RAN WG4 conformance CUSM-Plane test cases needing RF analysis		
	MTRX	RF towards the O-RU	Required: for all O-RU O-RAN WG4 conformance CUSM-Plane test cases needing RF signal generation including Beam forming tests support		
Signal Generator (Keysight VSG)	VXT	RF towards the O-RU	Required: for all O-RU O-RAN WG4 conformance CUSM-Plane test cases needing RF signal generation		
	MTRX	RF towards the O-RU	Required: for all O-RU O-RAN WG4 conformance CUSM-Plane test cases needing RF signal generation including Beam forming tests support		

The following test tools are required to test the O-RU.

Table 6-2. Test Tools for DUT = O-RU					
Testing Tool	Keysight Test Solution	Connection to DUT (O-RU)	Requirements		
Air monitor	WaveJudge	Passive monitoring of the RF interface	Optional : Troubleshooting interoperability issues on the RF interface		
Fronthaul analytics	Open RAN Studio Fronthaul Analytics	Full stack fronthaul analytics	Optional : Troubleshooting interoperability issues on the fronthaul interface		
Timing and Sync Tester	Time Sync Analyzer	Open fronthaul (ethernet) towards the O-RU	Required : for O-RAN WG4 conformance S-Plane test cases		
OTA chamber Shielded room	Functional: MPAC (Multi-Probe Anechoic Chamber) RF Performance: CATR (Compact Antenna Test Range)	RF towards the O-RU	Required : for O-RU OTA connectivity particularly in FR2		
Test Automation and Reporting	Test Management Center	Not applicable	Required : manages and orchestrates test cases scheduling and execution. Performs test results verdicts and reporting.		

Table 6-2 Test Tools for DUT = O-BU

6.2 Test Configuration 2

6.2.1 Step 1: Identify

Device Under Test (DUT) = O-DU/O-CU Interface Under Test (IUT) = O-RAN fronthaul (OFH) NR Deployment Architecture = Non standalone (NSA) Option 3x or Standalone (SA) Option 2.

Figure 6-2. Test Configuration 2, Step 1: Identify

Possible testing for Test Configuration 2:

- O-RAN WG4 fronthaul conformance testing
- O-RAN WG4 fronthaul interoperability testing (IOT) with O-RUs emulated

Note that different diagram is needed for Interoperability testing between (non-emulated) O-RU / O-DU and O-DU / O-CU.

- Load testing with O-RUs emulated
- End-to-End (E2E) testing with O-RUs emulated

6.2.2 Step 2: Evaluate

Similar to "6.2.1 Step 1: Identify", there are several possible combinations involving a test UEs, emulated UEs, and network functions. Identifying the appropriate setup type helps define an accurate test plan.

Device Under Test (DUT) = O-DU/O-CU Interface Under Test (IUT) = O-RAN fronthaul (OFH) NR Deployment Architecture = Non standalone (NSA) Option 3x or Standalone (SA) Option 2

6.2.2.1 Selection of test plans

Table 6-3. Selection of test plans for DUT = O-DU/O-CU				
Interface Under Test (IUT)	Test Plans	Comments		
O-RAN Fronthaul (OFH)	O-RAN WG4 Conformance Test O-RAN WG4 fronthaul interoperability test (IOT)			
General	O-RAN TIFG E2E test specification Additional E2E testing Load testing Additional test plans to be listed (for example, possible additions of power consumption measurements and others)			

6.2.2.2 Selection of test cases

O-RAN WG4 Conformance test specification documents the testing methodology, test setup and test cases for open fronthaul conformance testing of control, user, synchronization, and management CUSM-Planes for the O-RU and O-DU.

Test cases are classified as Mandatory, Conditional Mandatory (dependent on the capabilities of the DUTs) which are required to be passed, while the Optional test cases will have to be determined if these will need to be executed and passed.

The O-RAN O-DU test profile includes the following listed information which is required to determine the set of test cases that are applicable for the specific O-DU (DUT). It is recommended to manage, and version control all O-RAN O-DU test profiles in a central (cloud) location accessible to all test beds.

- O-RAN WG4 open fronthaul interoperability test (IOT) profile will include key information such as radio access technology: LTE/NR, FDD/TDD, IQ compression, Beamforming Methods (if the beam forming feature is supported by the DUT), and S-Plane topology configuration.
- Additional parameters which are required for test case selection include RAN topology number of cells, and configuration for each of the cells.
- DUT information to be determined depends on Vodafone's test report requirements. The "O-RAN Certification and Badging Processes and Procedures" document defines a set of test report templates which can serve as a good reference since the templates include information such as O-DU vendor, model number, versions for hardware, software, and firmware among other information required for test reporting purposes.
- List of test cases with the test specification releases and version numbers.

O-RAN WG4 fronthaul interoperability test specification documents the testing methodology, test setup, and test cases for open fronthaul interoperability testing of control, user, synchronization, and management planes (CUSM-Plane) for the O-RU and O-DU.

Test cases are classified as Mandatory, Conditional Mandatory (depending on the capabilities of the DUTs) which are required to be passed.

The O-RAN fronthaul interoperability test (IOT) profile includes the following listed information which are required to determine the set of test cases that are applicable for the specific pair of O-RU and O-DU (DUTs). It is recommended to manage, and version control all O-RAN IOT test profiles in a central (cloud) location accessible to all test beds.

- O-RAN WG4 open fronthaul interoperability test (IOT) profile will include key information such as radio access technology: LTE/NR, FDD/TDD, M-Plane architecture model, and S-Plane topology configuration.
- DUT information to be determined depends on Vodafone's test report requirements. The "O-RAN Certification and Badging Processes and Procedures" document defines a set of test report templates which can serve as a good reference since the templates include information such as O-RU and O-DU vendor, model number, versions for hardware, software, and firmware among other information which are required for test reporting purposes.
- List of test cases with the test specification releases and version numbers.

6.2.2.3 Test setup

The actual O-DU test setup is to be determined with the following listed parameters:

- Connectivity to the O-DU/O-CU on the fronthaul interface
 - Number of ports and connectivity rates (10GE/25GE/others)
- Timing and Synchronization topology LLS-C1, LLS-C2, LLS-C3

6.2.2.4 Test tools

The following test tools are required to test the O-DU/O-CU.

Table 6-4. Test tools for DUT = O-DU/O-CU			
Testing Tool	Keysight Test Solution	Connection to DUT (O-RU)	Requirements
O-RUs Emulator and embedded multi-UEs emulation capabilities	RuSIM	Open fronthaul (ethernet) towards the O-DU	Required: for O-DU O-RAN WG4 conformance CUM-Planes test cases, O-RAN WG4 IOT test cases, O-RAN TIFG E2E test cases
Core emulator OR Reference core network and application servers	CoreSIM	S1 (LTE/NR NSA) or N1/N2/N3 (NR SA) towards the O-CU	Required: for O-DU O-RAN WG4 conformance CUM-Planes test cases, O-RAN WG4 IOT test cases, O-RAN TIFG E2E test cases
Network Impairment Emulator	Network Emulator 2/3	Open fronthaul (ethernet) inline between the RuSIM and O-DU	Required : for test cases which require selective packet discards, delay, and jitter such as for delay management testing.
Fronthaul analytics	Open RAN Studio Fronthaul Analytics	Full stack fronthaul analytics	Optional : Troubleshooting interoperability issues on the fronthaul interface
Timing and Sync Tester	Time Sync Analyzer	Open fronthaul (ethernet)	Required : for O-RAN WG4 conformance S-Plane test cases

Table 6-4. Test tools for DUT = O-DU/O-CU			
Testing Tool	Keysight Test Solution	Connection to DUT (O-RU)	Requirements
Test Automation and Reporting	Test Management Center	Not applicable	Required : manages and orchestrates test cases scheduling and execution. Performs test results verdicts and reporting.

6.3 Test Configuration 3

6.3.1 Step 1: Identify

Device under Test (DUT) = LTE eNB, NR gNB (with either O-RU/O-DU or O-DU/O-CU) NR Deployment Architecture = Non-standalone (NSA) Option 3x or Standalone (SA) Option 2

Interface under Test (IUT) = O-RAN fronthaul (OFH) and others

Figure 6-3. Test Configuration 3, Step 1: Identify

Possible testing for Test Configuration 3:

- O-RAN WG4 fronthaul interoperability testing (IOT)
- Load testing
- End-to-end (E2E) testing
- •

6.3.2 Step 2: Evaluate

Similar to "6.3.1 Step 1: Identify", there are several possible combinations involving real and emulated UEs and network functions. Identifying the appropriate setup type will help us to define an accurate test plan.

Device Under Test (DUT) = LTE eNB or NR gNB (with either O-RU/O-DU or O-DU/O-CU) NR Deployment Architecture = Non-Standalone (NSA) Option 3x or Standalone (SA) Option 2.

Interface Under Test (IUT) = O-RAN Fronthaul (OFH) and others

6.3.2.1 Selection of test plans

Table 6-5 Selection of test plans for DUTs = O-RU and O-DU				
Interface Under Test (IUT)	Test Plans	Comments		
O-RAN Fronthaul (OFH) and others	- O-RAN WG4 fronthaul interoperability test (IOT)			
General	 O-RAN TIFG E2E test specification Additional E2E testing Load testing Additional test plans to be listed (for example, possible additions of power consumption measurements and others) 			

6.3.2.2 Selection of test cases

O-RAN WG4 fronthaul interoperability test specification documents the testing methodology, test setup and test cases for open fronthaul interoperability testing of control, user, synchronization, and management planes (CUSM-Plane) for the O-RU and O-DU.

Test cases are classified as Mandatory, Conditional Mandatory (dependent on the capabilities of the DUTs) which are required to be passed.

The O-RAN fronthaul interoperability test (IOT) profile includes the following listed information which are required to determine the set of test cases which are applicable for the specific pair of O-RU and O-DU (DUTs).

It is recommended to manage, and version control all O-RAN IOT test profiles in a central (cloud) location accessible to all test beds.

- O-RAN WG4 open fronthaul interoperability test (IOT) profile as this will include key information such as radio access technology: LTE/NR, FDD/TDD, M-Plane architecture model, S-Plane topology configuration.
- DUT information to be determined depending on Vodafone's test report requirements. The "O-RAN Certification and Badging Processes and Procedures" document defines a set of test report templates which can serve as a good reference as the templates include information such as O-RU and O-DU vendor, model number, versions for hardware, software, and firmware among other information which are required for test reporting purpose.
- List of test cases with the test specification releases and version numbers.

O-RAN TIFG End to End (E2E) test specification documents the testing methodology, test setup and test cases for LTE eNB and NR gNB for NSA (Option 3x) and SA (Option 2) deployment scenarios.

Test cases are classified as Mandatory which are required to be passed while the Optional test cases will have to be determined if these will need to be executed and passed.

The O-RAN E2E test (IOT) profile includes the following listed information which are required to determine the set of test cases which are applicable for the LTE eNB, NR gNB for NSA and SA (DUTs). It is recommended to manage, and version control all O-RAN E2E test profiles in a central (cloud) location accessible to all test beds.

- Parameters which are required for test cases selection include Radio access technology: LTE, NR NSA, NR SA, RAN topology number and configuration of the cells, O-RUs, O-DUs, O-CUs.
- DUT information to be determined depending on Vodafone's test report requirements. The "O-RAN Certification and Badging Processes and Procedures" document defines a set of test report templates which can serve as a good reference as the templates include information such as LTE eNB, NR gNB vendor, model number, versions for hardware, software and firmware among other information which are required for test reporting purpose.
- List of test cases with the test specification releases and version numbers.

6.3.2.3 Test setup

O-RAN WG4 fronthaul interoperability test specification - the actual test setup is to be determined with the following listed parameters:

- Connectivity to the O-RU on the RF interface
 - Conducted or Radiated (OTA)
 - Massive MIMO or non-Massive MIMO support
- Connectivity to the O-DU on the fronthaul interface
 - Number of ports and connectivity rates (10GE/25GE/others)
- Timing and Synchronization topology LLS-C1, LLS-C2, LLS-C3

O-RAN TIFG End to End (E2E) test specification - the actual E2E test setup is to be determined with the following listed parameters

- Connectivity to the LTE eNB or NR gNB for NSA and SA on the RF interface
 - Conducted or Radiated (OTA)
 - Massive MIMO or non-Massive MIMO support
- Connectivity to the LTE eNB, NR gNB for NSA and SA on the Core interface
 - LTE eNB needing 4G Core either reference or emulated
 - NR gNB for NSA needing EN-DC Core either reference or emulated
 - NR gNB for SA needing SA NG core either reference or emulated

- Connectivity to the NR gNB for NSA on the X2 interface
 - Needing LTE eNB either reference or emulated
- Timing and Synchronization topology lls-C1, lls-C2, lls-C

6.3.2.4 Test tools

The following test tools are required to test the O-RU and O-DU.

Table 6-6 Test tools for DUTs = O-RU and O-DU			
Testing Tool	Keysight Test Solution	Connection to DUT (O-RU & O-DU)	Requirements
Multi-UEs Emulator (LTE, NR NSA, NR SA)	UeSIM	RF towards the O-RU	Required : for O-RAN WG4 IOT test cases, O-RAN TIFG E2E test cases
Test UEs (LTE, NR NSA, NR SA)	Nemo/PBM	RF towards the O-RU	Required : for O-RAN WG4 IOT test cases, O-RAN TIFG E2E test cases
Core emulator OR Reference core network (LTE, NR NSA, NR SA)	CoreSIM	S1 (LTE/NR NSA) or N1/N2/N3 (NR SA) towards the O-CU	Required : for O-RAN WG4 IOT test cases, O-RAN TIFG E2E test cases
Application (traffic) server	CoreSIM	Not applicable	Required : for O-RAN WG4 IOT test cases, O-RAN TIFG E2E test cases needing data transfers and services testing
Network Impairment Emulator	Network Emulator 2/3	Open fronthaul (ethernet) inline between the O-RU and O-DU	Required : for test cases which require selective packet discards, delay, and jitter such as for delay management testing.
Fronthaul analytics Packet capture tool	Open RAN Studio Fronthaul Analytics	Full stack fronthaul analytics (passive monitoring)	Optional : Troubleshooting interoperability issues on the fronthaul interface
Air monitor	WaveJudge	Full stack RF interface analytics (passive monitoring)	Optional : Troubleshooting interoperability issues on the RF interface

Table 6-6 Test tools for DUTs = O-RU and O-DU			
Testing Tool	Keysight Test Solution	Connection to DUT (O-RU & O-DU)	Requirements
Timing and Sync Tester	Time Sync Analyzer	Open fronthaul (ethernet)	Required : for O-RAN WG4 conformance S-Plane test cases
Test Automation and Reporting	Test Management Center	Not applicable	Required : manages and orchestrates test cases scheduling and execution. Performs test results verdicts and reporting.
OTA chamber or Shield room	Functional: MPAC (Multi-Probe Anechoic Chamber) RF Performance: CATR (Compact Antenna Test Range)	RF towards the O-RU	Required : OTA connectivity between the UE emulator and/or Test UEs to the O-RU typically recommended for FR2
Massive MIMO MU-MIMO conducted test connector	Beam MIMO Detect (BMD)	RF towards the O-RU	Required : conducted connectivity between the UE emulator to the O-RU typically recommended for FR1 for Massive MIMO and MU-MIMO full stack testing.
Security attack module – DoS/DDoS attack Packet generation tool / DoS emulator	O-RAN Security Test Suite (DoS/DDoS attack module)	O-DU's open fronthaul interface O-DU's open fronthaul interface [for future release of this document] Near-RT RIC's A1 interface	Required: O-RAN TIFG E2E Test Specification 7.2.1 S-Plane PTP DoS Attack (Network layer) 7.2.2 C-Plane eCPRI DOS Attack (Network layer) [for future release of this document] 7.2.3 Near-RT RIC A1 Interface DoS Attack (Network layer)
Security attack module – Fuzzing attack Fuzzing tool	O-RAN Security Test Suite (Fuzzing attack module)	O-DU's open fronthaul interface O-DU's open fronthaul interface	Required: O-RAN TIFG E2E Test Specification 7.2.4 S-Plane PTP Unexpected Input (Network layer)

Table 6-6 Test tools for DUTs = O-RU and O-DU			
Testing Tool	Keysight Test Solution	Connection to DUT (O-RU & O-DU)	Requirements
		[for future release of this document] Near-RT RIC's A1 interface	 7.2.5 C-Plane eCPRI Unexpected Input (Network layer) [for future release of this document] 7.2.6 Near-RT RIC A1 Interface Unexpected Input (Network layer)
Security attack module – Vulnerability scan Vulnerability scanning tool	O-RAN Security Test Suite (Vulnerability scan and audit module)	[for future release of this document] Near-RT RIC's A1 interface	Required: O-RAN TIFG E2E Test Specification [for future release of this document] 7.2.7 Blind exploitation of well-known vulnerabilities over Near-RT RIC A1 interface (Network layer)
Security attack module – Cloud attack NFV benchmarking and resource exhaustion tool	O-RAN Security Test Suite (Cloud attack module)	O-Cloud	Required: O-RAN TIFG E2E Test Specification 7.3 O-Cloud resource exhaustion type of security test (Virtualization layer), 7.3.1 O-Cloud side- channel DoS attack

7 Vodafone's Current OpenRAN labs testing capabilities

Vodafone OpenRAN test labs are currently equipped with state-of-the-art testing solutions enabling its comprehensive Category 3 Open RAN lab testing capabilities.

These test labs currently support functional and performance testing and validation of multi-vendor O-RAN fronthaul solutions including

- O-RAN open fronthaul Conformance testing for O-RUs and O-DUs
- 3GPP Conformance testing for gNBs and eNBs
- O-RAN open fronthaul Interoperability testing for O-RUs and O-DUs
- End to End testing for gNBs and eNBs using both test UEs and emulated UEs (applicable in general for all multi-vendors network functions and interfaces)

Additional Open RAN functional and performance testing capabilities which the test labs can currently offer include

- Open fronthaul testing of the O-DUs
- F1 midhaul testing of the O-CUs
- F1, X2, Xn interoperability testing between gNB-CU/gNB-DU, eNB/en-gNB and gNBs
- E2 testing of the O-RAN Near Real-Time RIC (xApps) and AI/ML enabled optimization
- A1 interoperability testing of the Near Real-Time RIC (xApps) and Non-Real-Time RIC (rApps)

Vodafone's OpenRAN test and integration strategy requires automation for all test cases.

Test automation and reporting capabilities are progressively added to the test labs starting with End-to-End testing for gNBs and eNBs using real test UEs and in the near-term adding test automation suites to support

Automation test suite currently supported

• End to End testing for gNBs and eNBs using real UEs

Automation test suites planned to support as future roadmap

- O-RAN open fronthaul Conformance testing for O-RUs
- 3GPP Conformance testing for gNBs and eNBs
- O-RAN open fronthaul Interoperability testing for O-RUs and O-DUs
- O-RAN open fronthaul testing of the O-DUs
- End to End testing for gNBs and eNBs using emulated UEs

Vodafone plans to continue to evolve its OpenRAN test labs capabilities to support additional test scenarios such as Massive MIMO beam forming / Multi-users MIMO, Security, Energy Efficiency and Savings among others which are listed in Chapter 8.

8 Vodafone's Plan to Extend Open RAN Testing Confidence

The current focus of this handbook details a testing strategy and methodology that enables manual testing as well as robust automated testing and validation of multi-vendor O-RAN fronthaul solutions; the implementations leverage a common set of industry standards and test specifications for conformance, interoperability, and E2E testing for functional, performance, and security perspectives.

Vodafone and Keysight plans to extend this handbook to include additional topics such as **advanced deployment readiness tests** once they have been specified in industry standards and test specifications (they are largely not specified in the current versions). These deployment readiness tests are essential to ensure that O-RAN compliant network functions can be deployed by operators at scale for telco and vertical industry use cases and applications with confidence.

- **O-RAN conformance and interoperability for additional Open interfaces and network functions** such as:
 - F1 (gNB-CU | gNB-DU)
 - X2 (eNB | en-gNB)
 - Xn (gNB | gNB)
 - E2 (Near Real-Time RIC | E2 nodes)
 - Near Real-Time RIC APIs (Near Real-Time RIC | xApps)
 - A1 (Near Real-Time RIC | Non-Real-Time RIC)
 - **R1** (Non-Real-Time RIC | rApps)
 - **O1** (O-RAN managed entities | SMO)
 - **O2** (O-Cloud | SMO)
 - **O-RAN Accelerator Abstraction Layer (AAL) API** (hosted O-RAN workloads | hardware accelerators)
- O-RAN RAN Intelligent Controller (RIC) AI/ML enabled optimization use cases centric training, testing, and validation for each of the subsystems, interoperability between a pair of subsystems, and from the E2E perspective. RIC-enabled use cases of interest may include Traffic Steering, QoS and QoE Optimization, RAN Slicing, Massive MIMO Optimization, Shared O-RU, RAN Energy Savings, RAN Analytics Exposure API, and O-Cloud Resource Optimization, etc.
- **O-RAN Massive MIMO beam forming and Multi-Users MIMO** radios, O-DUs, and base station testing with performance KPIs such as spectral efficiency, capacity gains, power consumption, and energy efficiency, etc.
- **O-RAN Security resilience and failover validation** as operators have adopted a zero-trust approach on security. Operators expect multi-vendor O-RAN systems to be robustly tested and validated for commercial grade security implementation from the functional, performance, and Developer Security Operations (DevSecOps) perspective; this includes each of the O-RAN components, interfaces, and systems be designed and optimized for deployment scenarios of choice. This may include testing with extreme AI/ML enabled attacks, defence and failover validation, and threat detection in a complete DevSecOps approach.

- **O-RAN Energy Plane efficiency and savings** characterization, testing, and benchmarking for each of the software and hardware components and operations resulting in the most optimal usage of energy, while maintaining best in class user and service experiences, network performances, and minimizing impacts to User Equipment (UE), network complexities, and overheads.
- Live-to-Lab testing as live network operating environments and lifecycle management are to be emulated in a lab environment; testing can be conducted in a realistic lab test environment for both the radio and network perspectives therefore accelerating live-to-live deployments with "field" tested and optimized O-RAN solutions.
- Service Management and Orchestration (SMO) enabled Network OAM should be conducted to
 ensure that operational network scenarios including: FCAPS functionalities, Performance fault –
 configuration capabilities are thoroughly validated; this requires extensive experience with network
 operations.
- DevOps Automation Continuous Integration, Continuous Deployment / Development and Continuous Testing (CI/CD/CT) model evolving from current test automation models which will accelerate Open RAN technology speed and cost of evolution drastically with seamless transitions from lab to field to operations and vice versa.

9 Concluding Remarks

Open RAN presents enormous opportunities for the telecom industry to innovate the next generation connectivity fabric for consumer and enterprise use cases with its open architecture supporting multi-vendors interoperability. At the same time, it has created challenges from the testing and system integration standpoint which must be solved to accelerate Open RAN technology adoption.

In Vodafone's OpenRAN test labs, as we partner with the global ecosystem of operators and vendors to define the success of this new technology, we wanted to assure we covered every aspect and defined a test process that is applicable to all projects that come to our door.

To accomplish this, Vodafone has developed this O-RAN handbook as we have shared our vision and detailed a robust testing strategy and methodology for Open RAN systems as our goal is to help accelerate commercial deployments globally by operators at scale for telco and vertical industry use cases and applications.

Test automation is one of the key pillars of the test and integration strategy shared in this handbook as it is a fundamental building block required to apply the CI/CD/CT pipeline approach to Open RAN solutions which is an essential enabler to accelerate commercial deployments at scale.

An effective test automation strategy and successful implementation offer tremendous benefits in terms of scaling testing expertise, increased test coverage, accuracy, reliability, repeatability, and consistency of test results. It enables significant savings in terms of time, resources, and improvements on return of investments as expert resources are invested into enhancing test automation implementation rather than spent on recurring cycles of manual test executions.

The test configuration, test results analysis and determination of the test outcome, test reporting stages of the manual test cycle which are particularly laborious and time consuming can be drastically optimized using test automation techniques enabling time savings when implemented for a set of test specifications developed by O-RAN ALLIANCE made available in the public domain.

In the short term, Vodafone plans to automate test cases relating to the specifications listed below with the ambition of achieving the time savings indicated as follows.

- O-RAN O-RU fronthaul conformance¹ up to 60% and above
- O-RAN TIFG End-to-End system test using emulated UEs² up to 60% and above
- O-RAN TIFG End-to-End system test using test UEs³ up to 50% and above

The amount of time, resources and investments savings will obviously vary depending on the complexities of the test scenarios and test cases.

O-RAN ALLIANCE test specifications are designed for validating O-RAN network functions' compliance to O-RAN normative specifications and interoperability between these network functions, with the majority of these test cases focused on functional testing.

¹ O-RAN WG4 Conformance test specification "Mandatory" and "Conditional Mandatory" test cases are considered.

² O-RAN TIFG E2E test specification test cases which are applicable for Emulated UEs are considered.

³ Only a subset of test cases specified in the O-RAN TIFG E2E test specification applicable for Test UEs are considered.

While the O-RAN test specifications are used to provide a good starting point for test and integration activities, O-RAN products and systems are designed for commercial grade applications – additional test cases will be required to test, validate, and optimize them for commercial deployments.

Deployment readiness test cases standardised in 3GPP have been designed with many years of technology research and experiences testing, optimization and operating large scale commercial live networks across multiple generations of wireless technologies working with all parts of the wireless ecosystem. These deployment readiness test cases are currently not specified by O-RAN ALLIANCE and the industry would benefit from them doing so.

Vodafone's goal is to adopt a holistic approach for test and integration of Open RAN products and systems as our plan is to support a complete set of automated test suites to include all relevant O-RAN ALLIANCE and 3GPP test specifications and additional test cases supporting 3GPP releases-features, deployment readiness testing and optimization for the targeted use cases and deployment scenarios. Deployment readiness testing should include energy efficiency, performance, scalability, security, stability, robustness, and resiliency, under real-world operating conditions.

The future is bright for Open RAN technology as the potential benefits certainly are alluring. We are just at the beginning of this Open RAN journey, and we look forward to co-creating and making Open RAN a global success.

Annex / Appendix A

This information request captures the information required to illustrate compliance with the full suite of relevant ORAN ALLIANCE specifications.

A1. Information for the O-RU vendor to provide

Questions	O-RAN Radio Unit Vendor Response	Does the O-RAN WG4 IOT Profile Provide	M-Plane Yang
		Guidance	
O-RAN WG4 IOT Profile			
Share O-RU vendor recommended IOT profiles			
Ethernet interface			
Number of Ethernet ports		Yes, multiple	
Speed – 10/25/50 Gbps?		choice	
SFP type	-		
S-Plane			
ITU-T G8275.1 (only profile mandated in IOT profile)	This is mandatory for O-RU to support 8275.1	Yes	
M-Plane			
IPv4 or IPv6		Yes	
Version			
Radio and radio setup			
Number of RF ports supported			
Tx / Rx on same port?			
Band			

Questions	O-RAN Radio Unit Vendor Response	Does the O-RAN WG4 IOT Profile Provide Guidance	M-Plane Yang
RF frequency			Determine from: max-supported-frequency-dl, min-supported-frequency-dl max-supported-frequency-ul, min-supported-frequency-ul
RF carrier bandwidth		Yes, multiple choice	Determine from: max-carrier-bandwidth-dl, min-carrier-bandwidth-dl, max-carrier-bandwidth-ul, min-carrier-bandwidth-ul
RF subcarrier spacing		Yes	
RF input power			
RF output power			Determine from: <i>max-gain</i>
RF inline attenuator			
TDD/FDD		Yes	Determine from: duplex-scheme
TDD config		Yes, multiple choice	
Phase compensation yes/no			
Transport configuration			
M-Plane via VLAN? VLAN-ID			
CU-Plane via VLAN? VLAN-ID			
MTU size			

Questions	O-RAN Radio Unit Vendor Response	Does the O-RAN WG4 IOT Profile Provide Guidance	M-Plane Yang
RU category support			
CAT-A / CAT-B		Yes	Determine from: ru-supported-category
Carrier config for the test			
Carrier type - LTE/NR	Only NR support with automation		Determine from: supported-technology-ul, supported-technology-dl
Numerology		Yes	Determine from: supported-frame-structures
PRACH format, Sub-carrier spacing		Yes, multiple choice	Determine from: supported-prach-preamble-formats
PRACH frequency offset			
IQ power scaling			
Compression method support			
Configurable via M-plane?			
Static compression support (ORAN spec makes dynamic mandatory)			Determine from: o-ran-uplane-conf -> compression-method-supported
Compression method supported (list)			
DL I/Q Bitwidth			
UL I/Q Bitwidth			
O-RAN Beamforming			

Questions	O-RAN Radio Unit Vendor Response	Does the O-RAN WG4 IOT Profile Provide Guidance	M-Plane Yang
Is beamforming supported?			Determine from: section-type => 5,6 for Channel Information based supported-section-extensions => 1 for dynamic weight based supported-section-extensions => 11 for flexible weight based o-ran-beamforming being present
Beamforming configurable via M- Plane?			
Beamforming methods support (list)		Yes	Determine from: section-type => 5,6 for Channel Information based supported-section-extensions => 1 for dynamic weight based supported-section-extensions => 11 for flexible weight based o-ran-beamforming -> per-band-config -> capabilities-groups -> beamforming-trough-attributes- supported -> beamforming-trough-ue- channel-info-supported
eAxC-ids			
DL eAxCid	0x0001 (used by default)		
UL eAxCid	0x0001 (used by default)		
PRACH eAxCid	0x0004 (used by default)		
End point definitions			

Questions	O-RAN Radio Unit Vendor Response	Does the O-RAN WG4 IOT Profile Provide Guidance	M-Plane Yang
Are there any specific M-Plane configs for end point definitions?			
O-RU timing window configuration			Assume T12_max = 1 μs
Downlink timing			
T1a_cp_dl_max		Yes	Determine from: o-ran-delay-management->t2a-max- up - T12_max
T1a_cp_dl_min		Yes	Determine from: o-ran-delay-management->t2a-min- up + T12_max
T1a_up_dl_max		Yes	Determine from: o-ran-delay-management->t2a-max- cp-dl - T12_max
T1a_up_dl_min		Yes	Determine from: o-ran-delay-management->t2a-min- cp-dl + T12_max
Uplink timing			
T1a_cp_ul_max		Yes	Determine from: o-ran-delay-management->t2a-max- cp-ul - T12_max
T1a_cp_ul_min		Yes	Determine from: o-ran-delay-management->t2a-min- cp-ul + T12_max

A2. Information for the O-DU vendor to provide

CUS Profile:

Category	Item	Related O-RAN specification and section
General	Radio access technology	

Category	ltem	Related O-RAN specification and section
	TDD configuration	
	Nominal sub-carrier spacing	
	SSB sub-carrier spacing	
	Nominal FFT size	
	Total channel bandwidth	
	Number of spatial/antenna streams	
	Fronthaul Ethernet link	
	PRACH preamble format	-
	RU category	ORAN-WG4.CUS Specification Section 2.1
	LAA	
	Network delay determination	ORAN-WG4.CUS Specification Section 2.3.3
	RU adaptation of delay profile information (based on IIs-CU delay profile and transport delay)	ORAN-WG4.CUS specification section 2.3.3.2
	O-DU timing advance type	ORAN-WG4.CUS specification section 2.3.4- 2.3.5, Annex B
Delay management	T1a_max_up	ORAN-WG4.CUS specification section 2.3, Annex B
	T1a_min_up	ORAN-WG4.CUS specification section 2.3, Annex B
	T2a_max_up	ORAN-WG4.CUS specification section 2.3, Annex B
	T2a_min_up	ORAN-WG4.CUS specification section 2.3, Annex B
	Tcp_adv_dl	ORAN-WG4.CUS specification section 2.3.2, Annex B
	Ta3_max_up	ORAN-WG4.CUS specification section 2.3, Annex B
	Ta3_min_up	ORAN-WG4.CUS specification section 2.3, Annex B
	Ta4_max_up	ORAN-WG4.CUS specification section 2.3, Annex B
	Ta4_min_up	ORAN-WG4.CUS specification section 2.3, Annex B

Category	Item	Related O-RAN specification and section
	max (Ta4_max - Ta4_min)	Vendor's extension for Vendor's E2E operation
	T1a_max_cp_ul	ORAN-WG4.CUS specification section 2.3.2- 2.3.3, Annex B
	T1a_min_cp_ul	ORAN-WG4.CUS specification section 2.3.2- 2.3.3, Annex B
	T2a_max_cp_ul	ORAN-WG4.CUS specification section 2.3.2- 2.3.3, Annex B
	T2a_min_cp_ul	ORAN-WG4.CUS specification section 2.3.2- 2.3.3, Annex B
	T12_max	ORAN-WG4.CUS specification section 2.3, Annex B
	T12_min	ORAN-WG4.CUS specification section 2.3, Annex B
	max (T12_max - T12_min)	Vendor's specific extension
	T34_max	ORAN-WG4.CUS specification section 2.3, Annex B
	T34_min	ORAN-WG4.CUS specification section 2.3, Annex B
	max (T34_max - T34_min)	Vendor's specific extension
	Non-delay managed U-plane traffic	ORAN-WG4.CUS specification section 2.3.6
	Transport encapsulation	ORAN-WG4.CUS specification section 3.1.1-3.1.2
C/U-Plane transport	Jumbo frames	ORAN-WG4.CUS specification section 3.1.2
	Transport header	ORAN-WG4.CUS specification section 3.1.3
	eCPRI concatenation	ORAN-WG4.CUS specification section 3.1.3.1
	eAxC ID CU_Port_ID bitwidth	ORAN-WG4.CUS specification section 3.1.3.1.6
	eAxC ID BandSector_ID bitwidth	ORAN-WG4.CUS specification section 3.1.3.1.6
	eAxC ID CC_ID bitwidth	ORAN-WG4.CUS specification section 3.1.3.1.6
	eAxC ID RU_Port_ID bitwidth	ORAN-WG4.CUS specification section 3.1.3.1.6
	Fragmentation	ORAN-WG4.CUS specification section 3.5
	Transport prioritization across CUSM-Plane	ORAN-WG4.CUS specification section 3.3
	Transport prioritization within U-Plane	ORAN-WG4.CUS specification section 3.3
	Separation of UC-Plane and M-Plane traffic	ORAN-WG4.CUS specification section 3.4

Category	Item	Related O-RAN specification and section
	Transport-based UC-Plane endpoint identifier to differentiate O-RUs	ORAN-WG4.CUS specification section 3.4
Digital Power Scaling	UL gain_correction	ORAN-WG4.CUS specification section 6.1.3.2
	Reference_Level (for DL)	ORAN-WG4.CUS specification section 6.1.3.3
	RU beamforming type	ORAN-WG4.CUS specification section 2.1
Beamforming	Beamforming control method	ORAN-WG4.CUS specification section 5.4, Annex J
	U-Plane data compression method	ORAN-WG4.CUS specification section 6, Annex A
	U-Plane data IQ bitwidth	ORAN-WG4.CUS specification section 6, Annex D
IQ compression	FS adjustment: FS_Offset	ORAN-WG4.CUS specification section 6.1.3
	IQ data frame format not including udCompHdr field	ORAN-WG4.CUS specification section 6.3.3.13
	Section Type 0	ORAN-WG4.CUS specification section 5.4.2
	Section Type 1	ORAN-WG4.CUS specification section 5.4.2
	Section Type 3	ORAN-WG4.CUS specification section 5.4.2
	Section Type 5	ORAN-WG4.CUS specification section 5.4.2
	Section Type 6	ORAN-WG4.CUS specification section 5.4.2
	Section Type 7	ORAN-WG4.CUS specification section 5.4.2
	"symInc" flag	ORAN-WG4.CUS specification section 5.4.5.3
C-Plane	C-Plane for PRACH formats with preamble repetition	ORAN-WG4.CUS specification section 5.3.2
	Section extension 1 (beamforming weights)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 2 (beamforming attributes)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 3 (DL Precoding configuration parameters and indications)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 4 (modulation compr. params)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 5 (modulation compression additional scaling parameters)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 6 (Non-contiguous PRB allocation)	ORAN-WG4.CUS specification section 5.4.7

Category	Item	Related O-RAN specification and section
	Section extension 7 (Multiple-eAxC designation)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 8 (regularization factor)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 9 (Dynamic Spectrum Sharing parameters)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 10 (Multiple ports grouping)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 11 (Flexible BF weights)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 12 (Non-Contiguous PRB Allocation with Frequency Ranges)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 13 (PRB Allocation with Frequency Hopping)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 14 (Nulling-layer Info. for ueld-based beamforming)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 15 (Mixed-numerology Info. for ueld-based beamforming)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 16 (Section description for antenna mapping in UE channel information-based UL beamforming)	ORAN-WG4.CUS specification section 5.4.7
	Section extension 17 (Section description for indication of user port group)	ORAN-WG4.CUS specification section 5.4.7
	Coupling Method of C-Plane and U-Plane	ORAN-WG4.CUS specification section 5.4.1.2
	IQ data transfer without C-Plane (configuration over M-Plane)	ORAN-WG4.CUS specification section 6.2.2
S-plane	PTP Full Timing Support G.8275.1	ORAN-WG4.CUS specification section 3.2.3, 9
	PTP Partial Timing Support G.8275.2	ORAN-WG4.CUS specification section 3.2.3, 9
	GNSS based sync	ORAN-WG4.CUS specification section 3.2.3, 9
	SyncE	ORAN-WG4.CUS specification section 9, Annex H
	Topology configuration	ORAN-WG4.CUS specification section 9.2.2
Other information specific to interoperating with O- RU emulator	ORAN Spec version supported	
	IQ Compression Method and Bit Width	
	RU Port IDs (eAXC ID)	
	MAC Address	

Category	Item	Related O-RAN specification and section
	C-Plane VLAN ID	
	U-Plane VLAN ID	
	MTU Size	

M-Plane Profile:

Category	ltem	Related O-RAN Specification and section O-RAN-WG4.MP
High Level Description	Architectural models	2.1.2 M-Plane architecture model
	IP version	2.1.3 Transport Network
	Hash algorithm for data integrity	2.4 Security
	Ciphering algorithm	2.4 Security
	host key algorithms	2.4 Security 5.3 Download
	key exchange methods	2.4 Security
	O-RU identification by DHCP option	3.1.1 O-RU identification in DHCP
	VLAN Discovery	3.1.2 Management Plane VLAN Discovery Aspects
	IP address assignment	3.1.3 O-RU Management Plane IP Address Assignment
	O-RU controller discovery	3.1.4 O-RU Controller Discovery
	DHCP format of O-RU controller discovery	3.1.4 O-RU Controller Discovery
	NETCONF Call Home	3.2 NETCONF Call Home to O-RU Controllers
Start up installation	SSH Connection Establishment	3.3 SSH Connection Establishment
	TCP port for SSH establishment (for test purpose)	3.3.1 NETCONF Security
	NETCONF Authentication	3.3.2 NETCONF Authentication
	User Account Provisioning	3.3.3 User Account Provisioning
	sudo	3.4 NETCONF Access Control
	nms	3.4 NETCONF Access Control
	fm-pm	3.4 NETCONF Access Control
	swm	3.4 NETCONF Access Control
	NETCONF capability	3.5 NETCONF capability discovery

Category	Item	Related O-RAN Specification and section O-RAN-WG4.MP
	Watchdog timer	3.6 Monitoring NETCONF connectivity
	VLAN tagging for C/U/M-Plane	3.1.2 Management Plane VLAN Discovery Aspects 4.3 C/U-Plane VLAN Configuration
	C/U-Plane IP Address Assignment	4.4 O-RU C/U-Plane IP Address Assignment
O-RU to O-DU Interface Management	Definition of processing elements	4.5 Definition of processing elements
	C/U-Plane Transport Connectivity	4.6 Verifying C/U-Plane Transport Connectivity
	O-RU Monitoring of C/U-Plane Connectivity	4.10 O-RU Monitoring of C/U-Plane Connectivity
Configuration Management	Baseline configuration	6.1 Baseline configuration
Fault Management	subscribe notification	8.2 Manage Alarms Request
Synchronization Aspects	Sync Capability Object	10.2 Sync Capability Object
Details of O-RU Operations	Activation, deactivation, and sleep	12.3.2 Activation, deactivation, and sleep

Supplementary requirement for O-RAN operation - not documented in the M-Plane profiles published in O-RAN

SISO/RRM Configuration specific functionalities	PRACH Static configuration	12.6.1 Static configuration for PRACH processing
	Configurable FS offset	C.2 Option YANG Features: Table 15, No #18
	eAxC specific gain correction	C.2 Option YANG Features: Table 15, No #19
	Tx gain reference level control	C.2 Option YANG Features: Table 15, No #20
	Static configuration of PRACH pattern	C.2 Option YANG Features: Table 15, No #21
Alarms	Supported Alarms & Fault IDs	Annex A Alarm definition

Counters	Counters for Transceiver	B.1 Transceiver Statistics
	Counters for FH Reception Window	B.2 Rx Window Statistics
	Counters for power and temperature	B.4 Energy, Power, and Environmental Statistics
Supported ORAN Mandatory YANG modules		
Additional Functionalities	ORAN optional Yang modules to be supported	C.1 Optional Namespace
	ORAN Yang optional features to be supported	C.2 Optional YANG Features
	ORAN EXPOSED Optional Capabilities	C.3 Optional Capabilities Exposed Using O-RAN YANG Models C.4 Optional Capabilities Exposed Using Common YANG Models
Detailed M-Plane requirements	Requested additional vendor's proprietary operability functions to be supported	No O-RAN references